Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Photosynthetic acclimation to both warming and elevated CO2of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO2on photosynthetic capacity (VcmaxandJmax) in mature trees of two North American boreal conifers, tamarack and black spruce. We show thatVcmaxandJmaxat a standard temperature of 25°C did not change with warming, whileVcmaxandJmaxat their thermal optima (Topt) and growth temperature (Tg) increased. Moreover,VcmaxandJmaxat either 25°C,ToptorTgdecreased with elevated CO2. TheJmax/Vcmaxratio decreased with warming when assessed at bothToptandTgbut did not significantly vary at 25°C. TheJmax/Vcmaxincreased with elevated CO2at either reference temperature. We found no significant interaction between warming and elevated CO2on all traits. If this lack of interaction between warming and elevated CO2on theVcmax,JmaxandJmax/Vcmaxratio is a general trend, it would have significant implications for improving photosynthesis representation in vegetation models. However, future research is required to investigate the widespread nature of this response in a larger number of species and biomes.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts inToptAof field-grown trees will keep pace with the temperatures predicted for the 21stcentury under elevated atmospheric CO2concentrations. Here, using a whole-ecosystem warming controlled experiment under either ambient or elevated CO2levels, we show thatToptAof mature boreal conifers increased with warming. However, shifts inToptAdid not keep pace with warming asToptAonly increased by 0.26–0.35 °C per 1 °C of warming. Net photosynthetic rates estimated at the mean growth temperature increased with warming in elevated CO2spruce, while remaining constant in ambient CO2spruce and in both ambient CO2and elevated CO2tamarack with warming. Although shifts inToptAof these two species are insufficient to keep pace with warming, these boreal conifers can thermally acclimate photosynthesis to maintain carbon uptake in future air temperatures.more » « less
-
Abstract. Plant transpiration links physiological responses ofvegetation to water supply and demand with hydrological, energy, and carbonbudgets at the land–atmosphere interface. However, despite being the mainland evaporative flux at the global scale, transpiration and its response toenvironmental drivers are currently not well constrained by observations.Here we introduce the first global compilation of whole-plant transpirationdata from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021).We harmonized and quality-controlled individual datasets supplied bycontributors worldwide in a semi-automatic data workflow implemented in theR programming language. Datasets include sub-daily time series of sap flowand hydrometeorological drivers for one or more growing seasons, as well asmetadata on the stand characteristics, plant attributes, and technicaldetails of the measurements. SAPFLUXNET contains 202 globally distributeddatasets with sap flow time series for 2714 plants, mostly trees, of 174species. SAPFLUXNET has a broad bioclimatic coverage, withwoodland/shrubland and temperate forest biomes especially well represented(80 % of the datasets). The measurements cover a wide variety of standstructural characteristics and plant sizes. The datasets encompass theperiod between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data areavailable for most of the datasets, while on-site soil water content isavailable for 56 % of the datasets. Many datasets contain data for speciesthat make up 90 % or more of the total stand basal area, allowing theestimation of stand transpiration in diverse ecological settings. SAPFLUXNETadds to existing plant trait datasets, ecosystem flux networks, and remotesensing products to help increase our understanding of plant water use,plant responses to drought, and ecohydrological processes. SAPFLUXNET version0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The“sapfluxnetr” R package – designed to access, visualize, and processSAPFLUXNET data – is available from CRAN.more » « less
An official website of the United States government
